Classical Invariants for Global Actions and Groupoid Atlases

نویسندگان

  • Matías L. del Hoyo
  • Elias Gabriel Minian
چکیده

A global action is the algebraic analogue of a topological manifold. This construction was introduced in first place by A. Bak as a combinatorial approach to K-Theory and the concept was later generalized by Bak, Brown, Minian and Porter to the notion of groupoid atlas. In this paper we define and investigate homotopy invariants of global actions and groupoid atlases, such as the strong fundamental groupoid, the weak and strong nerves, classifying spaces and homology groups. We relate all these new invariants to classical constructions in topological spaces, simplicial complexes and simplicial sets. This way we obtain new combinatorial formulations of classical and non classical results in terms of groupoid atlases. 2000 Mathematics Subject Classification. 19D99, 20L05, 18G55, 55U35.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Actions, Groupoid Atlases and Applications

Global actions were introduced by A. Bak to give a combinatorial approach to higher K-theory, in which control is kept of the elementary operations through paths and paths of paths. This paper is intended as an introduction to this circle of ideas, including the homotopy theory of global actions, which one obtains naturally from the notion of path of elementary operations. Emphasis is placed on...

متن کامل

The H-Covariant Strong Picard Groupoid

The notion of H-covariant strong Morita equivalence is introduced for ∗-algebras over C = R(i) with an ordered ring R which are equipped with a ∗-action of a Hopf ∗-algebra H . This defines a corresponding H-covariant strong Picard groupoid which encodes the entire Morita theory. Dropping the positivity conditions one obtains H-covariant ∗-Morita equivalence with its H-covariant ∗-Picard groupo...

متن کامل

Orbifolds as Groupoids: an Introduction

The purpose of this paper is to describe orbifolds in terms of (a certain kind of) groupoids. In doing so, I hope to convince you that the theory of (Lie) groupoids provides a most convenient language for developing the foundations of the theory of orbifolds. Indeed, rather than defining all kinds of structures and invariants in a seemingly ad hoc way, often in terms of local charts, one can us...

متن کامل

Actions of vector groupoids

In this work we deal with actions of vector groupoid which is a new concept in the literature‎. ‎After we give the definition of the action of a vector groupoid on a vector space‎, ‎we obtain some results related to actions of vector groupoids‎. ‎We also apply some characterizations of the category and groupoid theory to vector groupoids‎. ‎As the second part of the work‎, ‎we define the notion...

متن کامل

A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity

A non-Abelian, Universal SpaceTime Ontology is introduced in terms of Categories, Functors, Natural Transformations, Higher Dimensional Algebra and the Theory of Levels. A Paradigm shift towards Non-Commutative Spacetime structures with remarkable asymmetries or broken symmetries, such as the CPTsymmetry violation, is proposed. This has the potential for novel applications of Higher Dimensional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2008